

A-LEVEL Mathematics

MPC3 – Pure Core 3 Mark scheme

6360 June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment			
(a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = m(4x+1)^3 \cos 2x + n(4x+1)^2 \sin 2x$			$m, n \neq 0$			
(6)	$m = 2$ and $n = 4 \times 3[=12]$ isw	A1	2				
(b)	$\left[\frac{dy}{dx}\right] = \frac{(3x^2 + 4)4x - (2x^2 + 3)6x}{(3x^2 + 4)^2} \text{oe}$	M1		Or (2x ² +3)(-1)(3x ² +4) ⁻² 6x+(3x ² +4) ⁻¹ 4x			
	$=\frac{-2x}{(3x^2+4)^2}$	A1					
			2				
(c)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{1}{\frac{2x^2 + 3}{3x^2 + 4}} \times \text{their } b(i)$	M1		'their b(i)' must be in the correct form $\frac{kx}{(3x^2+4)^2}$			
	PI	A1		$(3x^{2}+4)^{2}$			
	$\left[\frac{dy}{dx} = \frac{3x^2 + 4}{(2x^2 + 3)} \times \frac{-2x}{(3x^2 + 4)^2}\right] $ is w	AI					
	$\begin{bmatrix} dx \end{bmatrix} (2x^2 + 3) = (3x^2 + 4)^2$			Or (using rules of logs) $y = \ln(2x^2 + 3) - \ln(3x^2 + 4)$			
	(-2x)						
	$\left(=\frac{-2x}{(2x^2+3)(3x^2+4)}\right)$			$\frac{dy}{dx} = \frac{ax}{2x^2 + 3} - \frac{bx}{3x^2 + 4}$ M1 a > 0, b > 0			
				a = 4, b = 6 A1			
			2				
	Total 6						
Notes: Allow recovery from poor use of brackets in each part.							
(a) If expanded, $\frac{dy}{dx} = (ax^2 + bx + c)\sin 2x + (dx^3 + ex^2 + fx + 1)2\cos 2x$ M1							
	a = 192, b = 96, c = 12, d = 64, e = 48, f = 12 A1						
	M1, $\frac{dy}{dx} = \frac{\pm (3x^2 + 4)4x \pm (2x^2 + 3)6x}{(3x^2 + 4)^2}$ or accept p= -2	$\pm(2x^2 -$	+3)(-1)	$(3x^2+4)^{-2}6x\pm(3x^2+4)^{-1}4x$			

a $f(x) = x^x - 5$ PI(or reverse) $f(2) = -1$ $f(3) = 22$ M1Both values correctChange of sign(or different signs) $\Rightarrow 2 < \alpha < 3$ M1Must have both statement and intervalin words or symbols $\Rightarrow 2 < \alpha < 3$ A1Must have both statement and intervalin words or symbolsOR comparing 2 sides: $at 2, 2^2 < 5$; $at 3, 3^3 > 5$ (M b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ M1 $at 3, 3^3 > 5$ (M $x \ln x = \ln 5$ M1A1Taking logs and using rule of logs $\ln x = \frac{\ln 5}{x}$ A1A1AG, all correct (including middle ling c $[x_2 =]2.236$ B1B1Ignore any further values di $\frac{x y}{0.5 4.29289}$ B1A11 7 correct x values (and no extrast used) PI by correct y values 0.9 4.09047 B1At least 5 correct y in exact form or	Q2		Solution	Mark	Total	Comment
$f(2) = -1$ $f(3) = 22$ $Change of sign(or different signs) \Rightarrow 2 < \alpha < 3$ $M1$ $A1$ $M1$ $A1$ $M1$ $A1$ $M1$ $A1$ $M1$ $A1$ $M1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A		$f(x) = x^x - 5$				
f(3) = 22 Change of sign(or different signs) $\Rightarrow 2 < \alpha < 3$ M1Both values correctA1A1A1Must have both statement and interval in words or symbols OR comparing 2 sides: at 2, 2² < 5 ; at 3, 3³ > 5M1b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $\ln x = \frac{\ln 5}{x}$ M12 $\Rightarrow 2 < \alpha < 3$ (A1c $[x_2 =]2.236$ $[x_3 =]2.054$ M1A1A1A6, all correct (including middle ling B1di $\frac{x y}{0.5 4.29289}$ $0.9 4.09047$ B1A1A11 7 correct x values (and no extrast used) PI by correct y values						
Change of sign(or different signs) $\Rightarrow 2 < \alpha < 3$ Must have both statement and intervation words or symbols OR comparing 2 sides: at 2, 2 ² < 5; at 3, 3 ³ > 5 (M 2 $\Rightarrow 2 < \alpha < 3$ (A b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $\ln x = \frac{\ln 5}{x}$ $x = e^{\frac{\ln 5}{x}}$ A1 A1 C $[x_2 =]2.236$ $[x_3 =]2.054$ B1 B1 B1 B1 B1 B1 B1 B1 B1 B1				M1		Both values correct
$\Rightarrow 2 < \alpha < 3$ $A1$ $Must have both statement and intervation words or symbols OR comparing 2 sides: at 2, 22 < 5; at 3, 33 > 5 (M) 2 \Rightarrow 2 < \alpha < 3 A1 x = \ln 5 \ln x = \ln 5 \ln x = \ln 5 \ln x = \ln 5 x = e^{\frac{\ln 5}{x}} x = e^{\frac{\ln 5}{x}} x = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = $			n(or different signs)			Both values concer
b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $\ln x = \frac{\ln 5}{x}$ di $\frac{x + y}{0.5 + 4.29289}$ 0.7 + 4.22094 0.9 + 4.09047 b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $x \ln x = \ln 5$				A1		Must have both statement and interval
b $(x^x = 5 \implies \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $x \ln x = \ln 5$ $x = e^{\frac{\ln 5}{x}}$ di $\frac{x = (x_2 = 1)^2.236}{(x_3 = 1)^2.054}$ di $\frac{x = \frac{y}{0.5} = 4.29289}{0.7 = 4.22094}$ 0.9 = 4.09047 B1 B1 B						in words or symbols
b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $\ln x = \frac{\ln 5}{x}$ c $[x_2 =]2.236$ $[x_3 =]2.054$ di $\frac{x + y}{0.5 + 4.29289}$ 0.9 + 4.09047 b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $x = e^{\frac{\ln 5}{x}}$ A1 A1 A1 A1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B						OR comparing 2 sides:
b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $\ln x = \frac{\ln 5}{x}$ c $[x_2 =]2.236$ $[x_3 =]2.054$ di $\frac{x y}{0.5 4.29289}$ 0.7 4.22094 0.9 4.09047 b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $x = \ln 5$						at 2, $2^2 < 5$;
b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $\ln x = \frac{\ln 5}{x}$ c $[x_2 =]2.236$ $[x_3 =]2.054$ di $\frac{x y}{0.5 4.29289}$ 0.7 4.22094 0.9 4.09047 b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $x = \ln 5$						at $3 3^3 > 5$ (M1)
b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $x \ln x = \frac{\ln 5}{x}$ $x = e^{\frac{\ln 5}{x}}$ di $x = \frac{x y}{0.5 4.29289}$ 0.9 4.09047 b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $x = \ln 5$ $x = e^{\frac{\ln 5}{x}}$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1						$at 3, 3 > 3 \tag{M11}$
b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $x \ln x = \frac{\ln 5}{x}$ $x = e^{\frac{\ln 5}{x}}$ di $x = \frac{x y}{0.5 4.29289}$ 0.9 4.09047 b $(x^x = 5 \Rightarrow \ln x^x = \ln 5)$ $x \ln x = \ln 5$ $x = \ln 5$ $x = e^{\frac{\ln 5}{x}}$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1						
$\mathbf{c} \begin{bmatrix} x & -5 & -3 & -11 & x & y \\ x \ln x = \ln 5 & & & \mathbf{M} \\ \ln x = \frac{\ln 5}{x} & & & \mathbf{A} \\ x = e^{\frac{\ln 5}{x}} & & & \mathbf{A} \\ x = e^{\frac{1}{x}} & & \mathbf{A} $					2	$\Rightarrow 2 < \alpha < 3 \tag{A1}$
$x \ln x = \ln 5$ M1Taking logs and using rule of logs $\ln x = \frac{\ln 5}{x}$ A1A1 $x = e^{\frac{\ln 5}{x}}$ A1AG, all correct (including middle ling $x = e^{\frac{\ln 5}{x}}$ B1B1 $(x_2 =]2.236$ B1B1 $(x_3 =]2.054$ B1B1 $\frac{x y}{0.5 4.29289}$ B1 $0.7 4.22094$ B1 $0.9 4.09047$ B1A1 correct y in exact form or	b	$(x^x = 5 \implies 1)$	$\ln x^{x} = \ln 5$			
$\ln x = \frac{\ln 5}{x}$ A1Must see this line $x = e^{\frac{\ln 5}{x}}$ A1AG, all correct (including middle ling) $x = e^{\frac{\ln 5}{x}}$ B1B1 $x = 22.236$ B1B1 $(x_3 =]2.054$ B1Ignore any further values $\frac{x}{0.5}$ 4.29289B1 0.7 4.22094B1 0.9 4.09047B1A1A1 and a set form or further values						Taking loss and using sub-officer
xxA1x = $e^{\frac{\ln 5}{x}}$ A1x = $e^{\frac{\ln 5}{x}}$ A1x = $e^{\frac{1}{x}}$ A1AG, all correct (including middle ling)(x_2 =]2.236B1[x_3 =]2.054B1adi $\frac{x}{2}$ $\frac{1}{20054}$ B1AG, all correct (including middle ling)AG, all correct (including mi				M1		Taking logs and using rule of logs
xxA1x = $e^{\frac{\ln 5}{x}}$ A1x = $e^{\frac{\ln 5}{x}}$ A1x = $e^{\frac{1}{x}}$ A1AG, all correct (including middle ling)(x_2 =]2.236B1[x_3 =]2.054B1adi $\frac{x}{2}$ $\frac{1}{20054}$ B1AG, all correct (including middle ling)AG, all correct (including mi		$\ln x = \frac{\ln 3}{\pi}$		A1		Must see this line
$x = e^{\overline{x}}$ A1AG, all correct (including middle line) $x = e^{\overline{x}}$ A13 $[x_2 =]2.236$ B1B13 $[x_3 =]2.054$ B13 di \overline{x} y 0.5 4.29289 B1 0.7 4.22094 B1 0.9 4.09047 B1B1All 7 correct y valuesA1A1 $x = e^{\overline{x}}$ y $x = 2.054$ y $y = 2.054$ <th></th> <th>X</th> <th></th> <th></th> <th></th> <th></th>		X				
c $[x_2 =]2.236$ $[x_3 =]2.054$ B1 B1Ignore any further valuesdi x y 2 di x y 2 0.5 4.29289 0.7 $B1$ All 7 correct x values (and no extras used) PI by correct y values 0.9 4.09047 $B1$ At least 5 correct y in exact form or $At least 5 correct y in exact form or$				A1		AG, all correct (including middle line)
di $\begin{bmatrix} x_3 =]2.054 \\ \hline x_3 =]2.054 \\ \hline$					3	
di $\begin{array}{c c c c c c c c c c c c c c c c c c c $	С					Ion one only fourth on velves
di x y 0.5 4.29289 B1 0.7 4.22094 B1 0.9 4.09047 B1All 7 correct x values (and no extras used) PI by correct y valuesAll 7 correct y in exact form or		$[x_3 =]2.054$		DI	2	Ignore any further values
x y 0.5 4.29289 0.7 4.22094 0.9 4.09047 B1All 7 correct x values (and no extras used) PI by correct y valuesAt least 5 correct y in exact form or	di				2	
0.5 4.29289 0.7 4.22094 0.9 4.09047 B1At least 5 correct y in exact form or		x	у			
0.7 4.22094 0.9 4.09047 B1 At least 5 correct y in exact form or		0.5	4.29289	B1		
At least 5 confectly in exact form of		0.7	4.22094			used) PI by correct y values
		0.9	4.09047	B1		At least 5 correct v in exact form or
		1.1	3.88947			decimal values, rounded or truncated
1.33.59354to 3dp or better (in table or formula)						-
1.5 3.16288 (PI by correct answer)		1.5	3.16288			(PI by correct answer)
1.7 2.53531						
$\frac{1}{3} \times 0.2[4.2929 + 2.5353 + 4(4.2209)]$ M1 Correct use of Simpson's rule using 1/3 and 0.2 oe and their 7 y values (o		$\frac{1}{-} \times 0.2[4.2929]$	+2.5353+4(4.2209)	M1		
which 5 are correct to 2 dp) either		-				1/3 and 0.2 oe and their 7 y values (of which 5 are correct to 2dn) either
+3.8895 + 3.1629) + 2(4.0905 + 3.5935)] [which 5 are contect to 2up), either listed or totalled.		+3.8895+3.10	529)+2(4.0905+3.5935)]			
		_ 4.40		A 1		
$= 4.49 \qquad \qquad A1 \qquad CAO \qquad 4$		= 4.49		AI	4	
dii 6 - their (di) M1 PI by correct answer	dii	6 - their (di)		M1		PI by correct answer
= 1.51 A1F						
2 SC1 for – 1.51						SC1 for – 1.51
Total 13	Notor	-	Tota		13	
Notes: a condone $2 \le x \le 3$, allow 'x', 'root' for α , but not 'it'			allow 'r' 'root' for a but not	'it'		
di 4.49 with no working scores $0/4$				π		
an internation of the best of		9 with no worki	ng scores 0/4			

Q3	Solution	Mark	Total	Comment
	$x^2 - 5x + 6[=0]$			
	[<i>x</i> =]2, 3 PI	B1		B1 can be earned for any correct 2 solutions
	$x^2 + 5x - 6 = 0$			
	[x =] - 6, 1 PI	B 1		
	$x \leq -6$	B 1		or
	$x \ge 3$	B1 B1		$ \begin{array}{c} -6 \ge x \\ 3 \le x \end{array} $
				$J \ge \lambda$
	$1 \le x \le 2$	B 1		And no extras seen
			5	
	Total		5	

Correct inequalities implies correct critical values if not seen explicitly

A candidate may use a quartic to find the critical values, but marks are only earned for correct solutions as above, eg solutions of 1, 2 scores **B1**

If strict inequalities are used **throughout** then penalise 1 mark – but if some correct answers and some strict inequalities then mark as scheme.

Q4	Solution	Mark	Total	Comment
a	Stretch I			
	[Parallel to] x[-axis] II			
	(or line $y = 0$)	M1		I and II or III
	[SF] 0.5 III	A1		I + II + III
	then	AI		
	Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	M1		or (2^{nd}) Stretch [parallel to] <i>y</i> [-axis]
	$\begin{bmatrix} 2.5\\0 \end{bmatrix}$	A1		SF e^{-5}
	OR Translation $\begin{bmatrix} k \\ 0 \end{bmatrix}$	(M1)		(for the '2 stretch' method, if the 'y' direction stretch is first, marks can only be earned if there is a second
	$\begin{bmatrix} 0 \end{bmatrix}$	(A1)		stretch in 'x' direction. The stretches can be in either order)
	0	()		
	then			
	Stretch I			
	[Parallel to] x[-axis] II	(M1)		I and II or III
	[SF] 0.5 III	(A1)	4	I + II + III
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x-5}$	B1		
	Grad normal = $-\frac{1}{\text{their gradient}}$	B1F		Condone expression in terms of x
	(equation normal)			
	$y - e^{-1} = -\frac{e}{2}(x - 2) \qquad \text{oe}$ $(At A \ y = 0)$ $x = 2 + \frac{2}{e^2} \qquad \text{oe}$ $(At B \ x = 0)$ $y = e^{+}\frac{1}{e} = \frac{e^2 + 1}{e} \qquad \text{oe}$	B1		Must be exact values
	$\begin{pmatrix} x & x & y = 0 \end{pmatrix}$			
	$x = 2 + \frac{2}{e^2} \qquad \text{oe}$	M1		Attempt to find at least one intercept
	(At B x = 0)			from 'their' normal, subst $x = 0$ or
	$1 e^2 + 1$			y = 0 in any straight line equation
	$y = e + \frac{1}{e} = \frac{e}{e}$ oe	A1		Both <i>x</i> and <i>y</i> values correct
	$y = e^{+} - e^{-} = - e^{-} oe^{-}$ $\left((Area =) 0.5 \times \frac{(e^{2} + 1)}{e} \times \frac{2(1 + e^{2})}{e^{2}} \right)$ $= \frac{(e^{2} + 1)^{2}}{e^{3}}$			
	$=\frac{(e^2+1)^2}{e^3}$	A1		
			6	
	Tatal		40	
	Total		10	
ataa. (a) translation (accept translate, transla),	4.1	<u>ا</u>	

Q5	Solution	Mark	Total	Comment
а	$[f'(x)] = 16 - 2e^{2x}$	B1		
	(f'(x) = 0) 16-2e ^{2x} = 0	M1		For equating their derivative to zero (must be of form $a + be^{2x}$)
	$x = \frac{1}{2}\ln 8 \qquad \text{oe}$	A1		Allow AWRT 1.04
	$[f(x) =]8 \ln 8 - 8$ oe	m1		Correct subst of their x into $f(x)$, Allow AWRT 8.63 or 8.64
	$f(x) \le 8\ln 8 - 8 \qquad \text{oe}$	A1	5	Must have exact form and correct notation, no ISW
b	$g(x) = \frac{1}{x}$ oe	M1		
	gg(x) = x	A1		NMS 2/2
			2	
	Total		7	
Notes:		•	•	
	Allow equivalent exact forms for $8\ln 8 - 8$, Must have simplified $e^{\ln 8}$	but not o	lecimal e	equivalent for final A mark

Q6	Solution	Mark	Total	Comment
а	$u = \ln 3x$ $\frac{\mathrm{du}}{(\mathrm{dx})} = \frac{1}{x}$ oe	B1		PI by further work
	$\frac{dv}{(dx)} = \frac{1}{x^2} \qquad v = -x^{-1}$ $\int = -\frac{1}{x} \ln 3x - \int -x^{-1} \times \frac{1}{x} (dx) \qquad \text{oe}$	B1 M1		PI by further work Correct substitution of their terms into the parts formula
	$= -\frac{1}{x} \ln 3x - \frac{1}{x} (+c) \qquad \text{oe}$	A1	4	
b	$(V =)\pi \int_{\frac{1}{3}}^{1} (\frac{\ln 3x}{x})^2 dx$	B 1		Must include π , (not 2π), limits and dx (each seen at some stage, in this part)
	$[u = (\ln 3x)^2] \qquad \frac{\mathrm{d}u}{(\mathrm{d}x)} = 2\ln 3x \times \frac{1}{x}$	M1 A1		$\frac{\mathrm{d}u}{(\mathrm{d}x)} = k \ln 3x \times \frac{1}{x}$ $k = 2$
	$\frac{dv}{(dx)} = x^{-2} \qquad v = -x^{-1}$ $\int (\frac{\ln 3x}{x})^2 dx =$ $-\frac{1}{x} (\ln 3x)^2 - \int -x^{-1} \times 2\ln 3x \times \frac{1}{x} (dx)$ $[= -\frac{1}{x} (\ln 3x)^2 + \int 2\frac{\ln 3x}{x^2} dx]$ $= -\frac{1}{x} (\ln 3x)^2 - \frac{2}{x} \ln 3x - \frac{2}{x}$	M1 A1		Correct substitution of their terms into the parts formula
	$= [-(\ln 3)^2 - 2\ln 3 - 2] - [-3(\ln 1)^2 - 6\ln 1 - 6]$ (ln1 terms may be omitted) $[V =] \pi (4 - (\ln 3)^2 - 2\ln 3)$	M1 A1		Correct subst into expression of the form $\frac{k}{x}(\ln 3x)^2 + \frac{l}{x}\ln 3x - \frac{m}{x}$ and F(1)-F(1/3)

Total		/ 11	
		7	First B1 and final 2 marks are as first method
$= -\frac{1}{x}(\ln 3x)^2 - \frac{2}{x}\ln 3x - \frac{2}{x}$	(A1)		
$\int = \ln 3x \left(-\frac{1}{x} \ln 3x - \frac{1}{x} \right) - \int \left(-\frac{1}{x} \ln 3x - \frac{1}{x} \right) \frac{1}{x} (dx)$	(M1)		Correct substitution of their terms into the parts formula
$\frac{\mathrm{d}u}{(\mathrm{d}x)} = \frac{1}{x} \text{oe} \qquad v = -\frac{1}{x}\ln 3x - \frac{1}{x}$	(A1)		
OR $u = \ln 3x$ $\frac{dv}{(dx)} = \frac{\ln 3x}{x^2}$	(M1)		'splitting' in this way

Notes

In both parts, the method mark for use of parts formula is earned for correct subst of **their** terms into the parts formula, with no restriction on **their** terms

(b) Condone $(\ln 3x)^2$ as $\ln^2 3x$, throughout

Q7	Solution	Mark	Total	Comment
(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -1 \times (\cos x)^{-2} \times -\sin x$ $\sin x$	M1		
	$=\frac{\sin x}{\cos^2 x}$ oe			
	$=\frac{\sin x}{\cos x} \times \frac{1}{\cos x} \qquad \text{oe}$			Must see 'a middle line'
	$= \tan x \sec x$	A1		AG, all correct and no errors seen
			2	
(b)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2\sec^2 x - 3\sec x \tan x$	M1		$m \sec^2 x + n \sec x \tan x$
	$\left(\frac{dy}{dx} = 0\right)$ $[\sec x](2\sec x - 3\tan x)[=0] \qquad \text{oe}$	m1		$[\sec x](m\sec x + n\tan x)[=0]$
	$\sin x = \frac{2}{3}$	A1		Finding any correct exact trig ratio
	$\cos x = \frac{\sqrt{5}}{3}$ $\tan x = \frac{2}{\sqrt{5}}$ $\sec x = \frac{3}{\sqrt{5}}$	A1		Finding a second correct exact trig ratio
	$y = 2 \times \frac{2}{\sqrt{5}} - 3 \times \frac{3}{\sqrt{5}}$	M1		For subst their exact values correctly into y'
				(PI by correct final answer following previous 4 marks earned)
	$y = -\sqrt{5}$	A1 CSO		Must have used correct exact values throughout
			6	If second M mark is not earned, then SC1 for AWRT -2.24 or $-\sqrt{5}$
	Total		8	
) For M1 , condone 'dropping one minus andidates must use chain rule to qualify fo	-	_	

For 'second value', any of the two trig ratios, but not just sec x and $\cos x$. If second M mark is not earned, then **SC1**, eg a candidate could score M1m1A1A0M0 SC1

Q8	Solution	Mark	Total	Comment
	$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}x} = 4$ oe	B1		Correct expression for $\frac{du}{dx}$ or du or dx
	[u = 4x - 1] oe 4x = u + 1	B1		Correct term in kx , where $k = 1, 2, 4$
	$\int \frac{9-u}{2} \times \sqrt[3]{u} \times \frac{(\mathrm{d}u)}{4} \qquad \text{oe}$	M1		Replacing all terms in x to all in terms of u, including replacing dx , but condone omission of du
		A1		All correct, must see d <i>u</i> here or on next line
	$\left(=\frac{1}{8}\int 9u^{\frac{1}{3}}-u^{\frac{4}{3}}(\mathrm{d}u)\right)$ oe			
	$=\frac{1}{8}(\frac{3}{4}\times9u^{\frac{4}{3}}-\frac{3}{7}u^{\frac{7}{3}}) \text{oe}$	m1		Correct integration from an expression of the form $au^{\frac{1}{3}} + bu^{\frac{4}{3}}$ or $au^{\frac{1}{3}} + bu^{\frac{4}{3}} + cu^{\frac{1}{3}}$
	Limits $[x]_{0.25}^{0.5} = [u]_0^1$ may be seen earlier	B1		Or, correctly changing variable back into <i>x</i>
	$\left(=\frac{1}{8}[(\frac{27}{4}-\frac{3}{7})-0]\right)$			
	$=\frac{177}{224}$ oe	A1		allow equivalent fraction
	Total		7	
Notes:	Candidates might not collect terms, but proceed	as follow	'S	

MARK SCHEME – A-LEVEL MATHEMATICS – MPC3 – JUNE 2016

$\int \frac{5-2(\frac{u+1}{4})}{4} \times \sqrt[3]{u} \times (\mathrm{d}u)$	M1 A1
$\left \left(= \int \frac{5}{4} u^{\frac{1}{3}} - \frac{u^{\frac{4}{3}} + u^{\frac{1}{3}}}{8} (\mathrm{d}u) \right) \right $	
$=\frac{15}{16}u^{\frac{4}{3}}-\frac{3u^{\frac{7}{3}}}{56}-\frac{3u^{\frac{4}{3}}}{32}$	m1 etc

Q9	Solution	Mark	Total	Comment			
ai	$\left(\sec^2 x - \tan^2 x = 1\right)$						
	$(\sec x + \tan x)(\sec x - \tan x) = \sec^2 x - \tan^2 x$	M1		Or correct use of $\sec^2 x = 1 + \tan^2 x$			
		IVII		in a correct expression			
	$-5(\sec x + \tan x) = 1$	A1		AG: no errors seen			
	$\sec x + \tan x = -0.2$		2				
ii	$2 \sec x = -5.2$ or $2 \tan x = 4.8$	M1		Correctly reducing to a linear equation in one trig function			
	$\sec x = -2.6$	A1		PI by correct value for $\cos x$			
	$\cos x = -\frac{5}{13} \qquad \text{oe}$	A1	3	$\frac{a}{b}$ where a, b are correct integers			
b	$\sec y = -2.6$						
	$[y =] [\pm]112.6^{\circ}$	B 1		AWRT [±]112.6°			
				PI by a correct final answer			
	$2x-70 = [\pm]$ their y	M1					
	$x = -21.3^{\circ}, [-88.7^{\circ}],$	A1		And no other extras in interval			
				(ignore answers outside interval)			
	Total		<u>3</u> 8				
Notes			0				
	ernative I,						
	$\left(\sin x = -\frac{12}{13}\right)$ correctly using $\sin^2 x + \cos^2 x = 1$ M1						
$(\cos x)$	$=-\frac{5}{13}$ and/or $\tan x = \frac{12}{5}$)						
leadin							
$\sec x$ -	$\tan x = -0.2$ A1		A	G : no errors seen, must see a middle line			
	Also, the candidate could earn the M1A1 for part (ii) here (but only if part (ii) attempted, but final A1 mark must appear in part (ii)						
ii Cor	rect answer with no working scores 3/3, If M	[0 scored	, SC2 fo	or $\cos x = \mp \frac{5}{13}$ or $\frac{5}{13}$			
b fina	l answer must be to 1dp 10 scored, then SC1 for –21.3			10 10			